Data
Prerequisites
Make sure to read the following sections of the documentation before using this example:
The full source code for this example is available on the mila-docs GitHub repository.
job.sh
# distributed/single_gpu/job.sh -> good_practices/data/job.sh
#!/bin/bash
#SBATCH --gpus-per-task=rtx8000:1
#SBATCH --cpus-per-task=4
#SBATCH --ntasks-per-node=1
#SBATCH --mem=16G
-#SBATCH --time=00:15:00
+#SBATCH --time=01:30:00
+set -o errexit
# Echo time and hostname into log
echo "Date: $(date)"
echo "Hostname: $(hostname)"
# Ensure only anaconda/3 module loaded.
module --quiet purge
# This example uses Conda to manage package dependencies.
# See https://docs.mila.quebec/Userguide.html#conda for more information.
module load anaconda/3
module load cuda/11.7
# Creating the environment for the first time:
# conda create -y -n pytorch python=3.9 pytorch torchvision torchaudio \
-# pytorch-cuda=11.7 -c pytorch -c nvidia
+# pytorch-cuda=11.7 scipy -c pytorch -c nvidia
# Other conda packages:
# conda install -y -n pytorch -c conda-forge rich tqdm
# Activate pre-existing environment.
conda activate pytorch
-# Stage dataset into $SLURM_TMPDIR
-mkdir -p $SLURM_TMPDIR/data
-cp /network/datasets/cifar10/cifar-10-python.tar.gz $SLURM_TMPDIR/data/
-# General-purpose alternatives combining copy and unpack:
-# unzip /network/datasets/some/file.zip -d $SLURM_TMPDIR/data/
-# tar -xf /network/datasets/some/file.tar -C $SLURM_TMPDIR/data/
+# Prepare data for training
+mkdir -p "$SLURM_TMPDIR/data"
+
+# If SLURM_JOB_CPUS_PER_NODE is defined and not empty, use the value of
+# SLURM_JOB_CPUS_PER_NODE. Else, use 16 workers to prepare data
+: ${_DATA_PREP_WORKERS:=${SLURM_JOB_CPUS_PER_NODE:-16}}
+
+# Copy the dataset to $SLURM_TMPDIR so it is close to the GPUs for
+# faster training
+srun --ntasks=$SLURM_JOB_NUM_NODES --ntasks-per-node=1 \
+ time -p python data.py "/network/datasets/inat" ${_DATA_PREP_WORKERS}
# Fixes issues with MIG-ed GPUs with versions of PyTorch < 2.0
unset CUDA_VISIBLE_DEVICES
# Execute Python script
-python main.py
+srun python main.py
main.py
"""Data example."""
import logging
import os
import rich.logging
import torch
from torch import Tensor, nn
from torch.nn import functional as F
from torch.utils.data import DataLoader, random_split
from torchvision import transforms
from torchvision.datasets import INaturalist
from torchvision.models import resnet18
from tqdm import tqdm
def main():
training_epochs = 1
learning_rate = 5e-4
weight_decay = 1e-4
batch_size = 256
# Check that the GPU is available
assert torch.cuda.is_available() and torch.cuda.device_count() > 0
device = torch.device("cuda", 0)
# Setup logging (optional, but much better than using print statements)
logging.basicConfig(
level=logging.INFO,
handlers=[rich.logging.RichHandler(markup=True)], # Very pretty, uses the `rich` package.
)
logger = logging.getLogger(__name__)
# Create a model and move it to the GPU.
model = resnet18(num_classes=10000)
model.to(device=device)
optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate, weight_decay=weight_decay)
# Setup ImageNet
num_workers = get_num_workers()
try:
dataset_path = f"{os.environ['SLURM_TMPDIR']}/data"
except KeyError:
dataset_path = "../dataset"
train_dataset, valid_dataset, test_dataset = make_datasets(dataset_path)
train_dataloader = DataLoader(
train_dataset,
batch_size=batch_size,
num_workers=num_workers,
shuffle=True,
)
valid_dataloader = DataLoader(
valid_dataset,
batch_size=batch_size,
num_workers=num_workers,
shuffle=False,
)
test_dataloader = DataLoader( # NOTE: Not used in this example.
test_dataset,
batch_size=batch_size,
num_workers=num_workers,
shuffle=False,
)
# Checkout the "checkpointing and preemption" example for more info!
logger.debug("Starting training from scratch.")
for epoch in range(training_epochs):
logger.debug(f"Starting epoch {epoch}/{training_epochs}")
# Set the model in training mode (this is important for e.g. BatchNorm and Dropout layers)
model.train()
# NOTE: using a progress bar from tqdm because it's nicer than using `print`.
progress_bar = tqdm(
total=len(train_dataloader),
desc=f"Train epoch {epoch}",
)
# Training loop
for batch in train_dataloader:
# Move the batch to the GPU before we pass it to the model
batch = tuple(item.to(device) for item in batch)
x, y = batch
# Forward pass
logits: Tensor = model(x)
loss = F.cross_entropy(logits, y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Calculate some metrics:
n_correct_predictions = logits.detach().argmax(-1).eq(y).sum()
n_samples = y.shape[0]
accuracy = n_correct_predictions / n_samples
logger.debug(f"Accuracy: {accuracy.item():.2%}")
logger.debug(f"Average Loss: {loss.item()}")
# Advance the progress bar one step, and update the "postfix" () the progress bar. (nicer than just)
progress_bar.update(1)
progress_bar.set_postfix(loss=loss.item(), accuracy=accuracy.item())
progress_bar.close()
val_loss, val_accuracy = validation_loop(model, valid_dataloader, device)
logger.info(f"Epoch {epoch}: Val loss: {val_loss:.3f} accuracy: {val_accuracy:.2%}")
print("Done!")
@torch.no_grad()
def validation_loop(model: nn.Module, dataloader: DataLoader, device: torch.device):
model.eval()
total_loss = 0.0
n_samples = 0
correct_predictions = 0
for batch in dataloader:
batch = tuple(item.to(device) for item in batch)
x, y = batch
logits: Tensor = model(x)
loss = F.cross_entropy(logits, y)
batch_n_samples = x.shape[0]
batch_correct_predictions = logits.argmax(-1).eq(y).sum()
total_loss += loss.item()
n_samples += batch_n_samples
correct_predictions += batch_correct_predictions
accuracy = correct_predictions / n_samples
return total_loss, accuracy
def make_datasets(
dataset_path: str,
val_split: float = 0.1,
val_split_seed: int = 42,
):
"""Returns the training, validation, and test splits for iNat.
NOTE: We use the same image transforms here for train/val/test just to keep things simple.
Having different transformations for train and validation would complicate things a bit.
Later examples will show how to do the train/val/test split properly when using transforms.
"""
train_dataset = INaturalist(
root=dataset_path,
transform=transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
]),
version="2021_train"
)
test_dataset = INaturalist(
root=dataset_path,
transform=transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
]),
version="2021_valid"
)
# Split the training dataset into a training and validation set.
train_dataset, valid_dataset = random_split(
train_dataset, ((1 - val_split), val_split), torch.Generator().manual_seed(val_split_seed)
)
return train_dataset, valid_dataset, test_dataset
def get_num_workers() -> int:
"""Gets the optimal number of DatLoader workers to use in the current job."""
if "SLURM_CPUS_PER_TASK" in os.environ:
return int(os.environ["SLURM_CPUS_PER_TASK"])
if hasattr(os, "sched_getaffinity"):
return len(os.sched_getaffinity(0))
return torch.multiprocessing.cpu_count()
if __name__ == "__main__":
main()
data.py
"""Make sure the data is available"""
import os
import shutil
import sys
import time
from multiprocessing import Pool
from pathlib import Path
from torchvision.datasets import INaturalist
def link_file(src: Path, dest: Path) -> None:
src.symlink_to(dest)
def link_files(src: Path, dest: Path, workers: int = 4) -> None:
os.makedirs(dest, exist_ok=True)
with Pool(processes=workers) as pool:
for path, dnames, fnames in os.walk(str(src)):
rel_path = Path(path).relative_to(src)
fnames = map(lambda _f: rel_path / _f, fnames)
dnames = map(lambda _d: rel_path / _d, dnames)
for d in dnames:
os.makedirs(str(dest / d), exist_ok=True)
pool.starmap(
link_file,
[(src / _f, dest / _f) for _f in fnames]
)
if __name__ == "__main__":
src = Path(sys.argv[1])
workers = int(sys.argv[2])
# Referencing $SLURM_TMPDIR here instead of job.sh makes sure that the
# environment variable will only be resolved on the worker node (i.e. not
# referencing the $SLURM_TMPDIR of the master node)
dest = Path(os.environ["SLURM_TMPDIR"]) / "dest"
start_time = time.time()
link_files(src, dest, workers)
# Torchvision expects these names
shutil.move(dest / "train.tar.gz", dest / "2021_train.tgz")
shutil.move(dest / "val.tar.gz", dest / "2021_valid.tgz")
INaturalist(root=dest, version="2021_train", download=True)
INaturalist(root=dest, version="2021_valid", download=True)
seconds_spent = time.time() - start_time
print(f"Prepared data in {seconds_spent/60:.2f}m")
Running this example
$ sbatch job.sh